Exact Determinants of the RFPrLrR Circulant Involving Jacobsthal, Jacobsthal-Lucas, Perrin and Padovan Numbers

نویسندگان

  • TINGTING XU
  • ZHAOLIN JIANG
چکیده

Circulant matrix family occurs in various fields, applied in image processing, communications, signal processing, encoding and preconditioner. Meanwhile, the circulant matrices [1, 2] have been extended in many directions recently. The f(x)-circulant matrix is another natural extension of the research category, please refer to [3, 11]. Recently, some authors researched the circulant type matrices with famous numbers. In [3], Shen et al. discussed the explicit determinants of the RFMLR and RLMFL circulant matrices involving certain famous numbers. Jaiswal [4] showed some determinants of circulant matrices whose elements are the generalized Fibonacci numbers. Lind presented the determinants of circulant and skew circulant involving Fibonacci numbers in [5]. Gao et al. [6] considered the determinants and inverses of skew circulant and skew left circulant matrices with Fibonacci and Lucas numbers. Akbulak and Bozkurt [7] proposed some properties of Toeplitz matrices involving Fibonacci and Lucas numbers. In [8], authors considered circulant matrices with Fibonacci and Lucas numbers and proposed their explicit determinants and inverses by constructing the transformation matrices. Jiang and Hong gave exact determinants of some special circulant matrices involving four kinds of famous numbers in [9]. See more of the literatures in [10, 11, 12]. We introduce two new patten matrices, i.e. row

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Bounds for the Norms of Circulant Matrices with the k-Jacobsthal and k-Jacobsthal Lucas Numbers

Abstract In this paper we investigate upper and lower bounds of the norms of the circulant matrices whose elements are k−Jacobsthal numbers and k−Jacobsthal Lucas numbers.

متن کامل

Some Generalizations of the Jacobsthal Numbers

The main object of this paper is to introduce and investigate some properties and relations involving sequences of numbers Fn,m(r), for m = 2, 3, 4, and r is some real number. These sequences are generalizations of the Jacobsthal and Jacobsthal Lucas numbers.

متن کامل

The Jacobsthal Sequences in Finite Groups

Abstract In this paper, we study the generalized order- Jacobsthal sequences modulo for and the generalized order-k Jacobsthal-Padovan sequence modulo for . Also, we define the generalized order-k Jacobsthal orbit of a k-generator group for and the generalized order-k Jacobsthal-Padovan orbit a k-generator group for . Furthermore, we obtain the lengths of the periods of the generalized order-3 ...

متن کامل

On the Jacobsthal-Lucas Numbers by Matrix Method

In this study, we define the Jacobsthal Lucas E-matrix and R-matrix alike to the Fibonacci Q-matrix. Using this matrix represantation we have found some equalities and Binet-like formula for the Jacobsthal and Jacobsthal-Lucas numbers.

متن کامل

On Some Identities of k-Jacobsthal-Lucas Numbers

In this paper we present the sequence of the k-Jacobsthal-Lucas numbers that generalizes the Jacobsthal-Lucas sequence introduced by Horadam in 1988. For this new sequence we establish an explicit formula for the term of order n, the well-known Binet’s formula, Catalan’s and d’Ocagne’s Identities and a generating function. Mathematics Subject Classification 2010: 11B37, 11B83

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016